
International Journal of Scientific & Engineering Research, Volume 5, Issue 10, October-2014                                                                         1304 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org 

Exploiting Dynamic Resource Allocation for 
Parallel Data Processing in Cloud Computing 

Environment  
‘Vinayak V. Awasare’, ‘PG Student of PCCOE, University of Pune Maharashtra India’ , 

‘Sudarshan Deshmukh’, ‘Assistant Professor, PCCOE, University of Pune, Maharashtra, India’ 
 

Abstract—The dynamic resource allocation in cloud computing has attracted attention of the research community in the last few 
years. Many researchers around the world have come up with new ways of facing this challenge. Number of Cloud provider 
companies has started to include frameworks for parallel data processing in their product which making it easy for customers to 
access these services and to deploy their programs. The processing frameworks which are currently used have been designed for 
static and homogeneous cluster setups. So the allocated resources may be inadequate for large parts of the submitted tasks and 
unnecessarily increase processing cost and time. Again due to opaque nature of cloud, static allocation of resources is possible, but 
vice-versa in dynamic situations. 

The proposed new Generic data processing framework is intended to explicitly exploit the dynamic resource allocation in cloud for 
task scheduling and execution. Experimental result shows that our approach outperforms existing scenario. The performance gain 
over existing system i.e. Nephele  by proposed approach is found average 45% in terms of execution time of number of tasks.  

Index Terms —Cloud Computing, Cyclic Job Execution, Dynamic Resource Allocation, DAG, Resource Management, Resource 
Scheduling, Nephele. 

——————————      —————————— 
 

 
1. INTRODUCTION 

Cloud Computing is an essential ingredient of 
modern computing systems. Computing concepts, 
technology and architectures have been developed and 
consolidated in the last decades; many aspects are subject 
to technological evolution and revolution. Cloud 
Computing is an computing technology that is rapidly 
consolidating itself as the next step in the development 
and deployment of increasing number of distributed 
application.  

Cloud computing is nothing but a specific style of 
computing where everything from computing power to 
infrastructure, business apps are provided as a service. 
It’s a computing service rather than a product. In cloud, 
shared resources, software and information is provided 
as s metered service over the network. When the end user 
accesses some service is cloud, he is not aware of where 
that service is coming from or what is platform being 
used or where it is being stored [2]. 

Currently a number of companies have to handle 
large amounts of data in a cost-efficient manner. These 
companies are operators of Internet search engines, like 
Yahoo, Google or Microsoft. The huge amount of data or 
datasets they have to process every day has made 
traditional database solutions prohibitively expensive. So 
these numbers of growing companies have popularized 

an architectural paradigm based on a huge number of 
commodity servers. Problems like regenerating a web 
index or processing crawled documents are split into 
several independent subtasks, distributed among the 
available nodes, and computed in parallel. 

The cloud computing paradigm makes the resource 
as a single point of access to the number of clients and is 
implemented as pay per use basis. Though there are 
number of advantages of cloud computing such as 
virtualized environment, equipped with dynamic 
infrastructure, pay per consume, totally free of software 
and hardware installations, prescribed infrastructure and 
the major concern is the order in which the requests are 
satisfied which evolves the scheduling of the resources. 
Allocation of resources has been made efficiently that 
maximizes the system utilization and overall 
performance. Cloud computing is mainly sold on 
demand on the basis of time constrains basically specified 
in hours or minutes. So the scheduling has to be done in 
such a way that the resource utilization has need done 
efficiently. 

Nephele is the first data processing framework used 
for dynamic resource allocation offered by today’s 
Infrastructure-as-a-Service (IaaS)clouds for both, task 
scheduling and task execution. Some tasks of a particular 
processing job can be assigned to different types of 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 10, October-2014                                                                         1305 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org 

virtual machines (VMs) which are automatically started 
and terminated during the job execution [1]. 

We proposed a new Generic Framework which 
dynamically allocates resources to the data processing 
Framework. The objective of our proposed approach is to 
reduce the execution time, migration time for resources 
and network latency.  The performance gain over existing 
system i.e. Nephele  by proposed approach is found 
average 45% in terms of execution time of number of 
tasks.  

 
2. RELATED WORK 
Dynamic resource allocation is one of the most 

challenging problems in the resource scheduling 
problems. The dynamic resource allocation in cloud 
infrastructure has capture attention of the number of 
research community in the last decade. Many researchers 
around the world have given number of solution for this 
challenging problem i.e. dynamic resource allocation in 
cloud infrastructure. 

Now a day’s number of growing companies has 
popularized an architectural paradigm based on a huge 
number of commodity servers. Problems like 
regenerating a web index or processing crawled 
documents are split into several independent subtasks, 
distributed among the available nodes, and computed in 
parallel. Simplify the development of such number of 
distributed applications on top of the architectures; some 
of the cloud provider companies have also built 
customized data processing frameworks. Examples are 
Google’s MapReduce [7], Yahoo’s Map-Reduce-Merge [6] 
or Microsoft’s Dryad [8]. They can be classified by terms 
like or many-task computing (MTC) or high throughput 
computing (HTC) depending on the available amount of 
data and the number of tasks of a number of jobs  
involved in the computation [9]. These systems are not 
same in design but their execution models share similar 
objectives, fault tolerance, and execution optimizations 
from the number of developer. Software Developers can 
continue to write number of sequential programs and 
processing framework then distribute these programs 
among the available resources and executes each instance 
of these programs on the appropriate and available 
fragment of data. 

For companies that only have to process huge 
amounts of datasets running their own data center is 
obviously not an option every time  but now Cloud 
computing has emerged as a promising approach to rent 
a large IT infrastructure on a short-term pay-per-consume 

basis. Operators of so-called Infrastructure-as-a-Service 
(IaaS) clouds, like Amazon EC2 [3], let their customers 
control, allocate and access a set of virtual machines 
(VMs) which run inside their data centers and only 
charge them for the period of time the machines are 
allocated dynamic. The VMs are typically expressed in 
different types, each type with its own characteristics 
such as amount of main memory, number of CPU cores, 
etc. 

VM abstraction of Infrastructure as a Service (IaaS) 
clouds fits the architectural paradigm assumed by the 
data processing frameworks like Hadoop [10], a popular 
open source implementation of Google’s MapReduce 
framework, already have begun to promote using their 
frameworks in the cloud [11].  Amazon EC2 cloud has 
integrated Hadoop as one of its core infrastructure 
services in its infrastructure [4]. However, instead of 
embracing its dynamic resource allocation, now available 
data processing frameworks can expect the cloud to use 
the static nature of the cluster environments they were 
originally designed for. E.g., at the moment the number 
and types of VMs allocated at the starting of a processing 
job cannot be changed in the time of processing, although 
the job consists of might have completely different 
demands on the environment.  

For on-demand resource provisioning several 
approaches has been arose recently: Author has presented 
an approach to handle peak-load situations in BPEL 
workflows using Amazon EC2[11] and Author has given 
a solution how to provide a  resource abstraction over 
grid computing and cloud resources for scientific 
workflows[21]. Both approaches rather point at batch-
driven workflows than the pipelined, data-intensive 
workflows which Nephele focuses on. The FOS project 
[22] recently presented an operating system for multi core 
and clouds which is also capable of on-demand VM 
allocation. 

Nephele is the first data processing framework used 
for dynamic resource allocation offered by today’s 
Infrastructure-as-a-Service (IaaS) clouds for both, task 
scheduling and task execution. Some tasks of a particular 
processing job can be assigned to different types of 
virtual machines (VMs) which are automatically started 
and terminated during the job execution [1]. 

 
3. PROPOSED WORK  
Proposed generic framework is a parallel and 

distributed programming framework written in core 
Java. Traditionally such frameworks are heavy as well as 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 10, October-2014                                                                         1306 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org 

complex in nature. We started with the concept that, we 
wanted to have been a simple model, very light weight 
and programmer intuitive. We also wanted to make sure 
that we should have a extremely scalable and very high 
performance framework in place. 

 
3.1 System Architecture 

Proposed system architecture follows a classic 
master-worker pattern is illustrated in following Fig. 3. 
The Job Manager receives the client’s jobs, is responsible 
allocation them to available task manager, and 
coordinates their execution by communicating with task 
manager. Job Manager (JM) is capable of communicating 
with the interface the cloud operator provides to control 
the instantiation of VMs i.e. Cloud Controller. So both Job 
manager and Cloud Controller is responsible for allocate 
or deallocate VMs according to the current job execution 
phase. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Structural overview of Proposed Framework 
running in an Infrastructure-as-a-Service (IaaS) cloud. 

 
The actual execution of tasks is carried out by a Task 

Manager.  A Task Manager receives one or more tasks 
from the JM at a time, process them, and after that inform 
the JM about their completion or possible errors. 
Whenever jobs are received by JM then JM decides, 
depending on the particular tasks, what type and how 
many of instances the job should be executed on so 
according to that the respective instances must be 
allocated/deallocated to ensure a continuous but cost-
efficient processing. 

Here a Sample Scenario has been shown in Fig. 3 of 
how proposed generic framework works in cloud 
environment. Processes are Replicated and Deployed on 
three task managers which are managed by a Job 
Manager. Thus, whenever a request is received by a 
Cloud controller it passes it to the job manager. The job 
manager chooses the best available task manager for 

processing the request. The request is either processed 
entirely on a task manager or partially in parts by 
different task manager and response is sent back to the 
cloud controller. 

 
3.2 Cyclic Job Scheduling Algorithm 

 
Cyclic Job Scheduling:  

Cyclic job scheduling is the method by which 
threads, processes or data flows are given access to 
system resources in cyclic manner. This is usually done to 
load balance and share system resources effectively or 
achieve a target quality of service. The need for a 
scheduling algorithm arises from the requirement for 
most modern systems to perform multitasking. 

 
Algorithm 
 1: Initialize scheduler instance on cloud by starting 
project execution. 
2: Read task configuration form task_configuration.xml 
file which contains number   of tasks to be gets executed 
and flow of those task. 
3: Perform Unmarshalling on input 
task.configuration.xml file. Unmarshelling process 
converts .xml file into number of Java Objects. 
4:  Initialize task job Pooler for queuing of given number 
of tasks. 
5: Validate task_configuration.java file. If 
task_configuration.java file contains NULL values then 
go to Step 10 else go to Step 6. 
6: Prepare execution path for bunch of available tasks 
waiting for execution in task pool. 
7: Execute Initial task and validate result. Read out node 
configuration of completed task to find next task to 
execute. 
8: Execute next task and validate results.  
9: Read out node configuration of completed task to find 
next task to execute. If there is next task to execute then 
go to step 8 else go to step 10. 
10: Terminate Execution and Stop 

 
Fig. 2: Cyclic Job scheduling Algorithm 

 
3.3   Mathematical Equations  
 Two major parameters we used to compare our 
proposed system with existing system. Those two 
parameters are execution time of number of tasks and line 
of code of input .xml file to the framework. 

• Execution Time (ET): 

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Thread_%28computer_science%29
http://en.wikipedia.org/wiki/Process_%28computing%29
http://en.wikipedia.org/wiki/Flow_%28computer_networking%29
http://en.wikipedia.org/wiki/Load_balancing_%28computing%29
http://en.wikipedia.org/wiki/Quality_of_service
http://en.wikipedia.org/wiki/Computer_multitasking


International Journal of Scientific & Engineering Research, Volume 5, Issue 10, October-2014                                                                         1307 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org 

The execution time or CPU time of a given task is 
defined as the time spent by the system executing that 
task, including the time spent executing run-time or 
system services on its behalf. The mechanism used to 
measure execution time is implementation defined. It is 
implementation defined which task, if any, is charged the 
execution time that is consumed by interrupt handlers 
and run-time services on behalf of the system.  

We used following formula to calculate Execution 
time of number of tasks. 
Request Task Set = { T1, T2, T3,…..Tn } 
Resource Set = { R1,R2,R3,………Rn } 
Ri is resource allocated for request task Ti   
Ti serves by Ri  
 

ET = Finish time of Ti – Starting time of Ti 
Where ET is Execution Time 

3.4 General Hardware Setup 
All experiments will be conducted on local IaaS cloud 

of commodity servers. Each server is equipped with two 
Xeon 2 which having 66 GHz CPUs (8 CPU cores) and a 
total main memory of 32GB. All servers will be connected 
through regular 1 GBit/s Ethernet links. The host 
operating system will be Linux (kernel version 2.6.30) 
with KVM [15] (version 88-r1) using virtio[23] to provide 
virtual I/O access. 

To manage the cloud and provision VMs on request 
of Generic proposed framework, we set up Eucalyptus 
[16] which is much similar to Amazon EC2, Eucalyptus 
offers a predefined set of instance types a user can choose 
from. During our experiments we will consider two 
different instance types: The first type of instance will 
bex1.small which corresponds to an instance with one GB 
of RAM, one CPU core, and a 128GB disk. The second 
type of instance will be y1.xlarge, represents an instance 
which will having18 GBRAM, 8 CPU cores and a 512 GB 
disk.  

 
4.RESULT AND DISCUSSIONS 

Following tables shows the comparison of 
existing systems with proposed system in terms of 
execution time in minutes per number of tasks allocated 
to particular system. 

 
TABLE I 

Comparison in terms of Execution time 

 
 
Following graph shows the comparison of existing 

systems with proposed system in terms of execution time 
in minutes per number of tasks allocated to particular 
system. 

 

Fig. 3: Comparison of Existing systems with proposed system in 
terms of Executing time (Minutes) per number of tasks 

5. CONCLUSION 
In particular, we are interested in improving 

Framework’s ability to adapt to resource overload or 
underutilization during the job execution automatically. 
We proposed a new Generic Framework which 
dynamically allocates resources and which uses cyclic job 
execution algorithm. Proposed System eliminates the 
drawback of existing frameworks that is acyclic job 
execution and improper resource utilization. Proposed 
Framework avoids rewriting of input file source code 
which reduces the overall cost of system. 

The proposed new Generic data processing 
framework is intended to explicitly exploit the dynamic 
resource allocation in cloud for task scheduling and 
execution. Experimental result shows that our approach 
outperforms existing scenario. The performance gain over 
existing system i.e. Nephele  by proposed approach is 
found average 45% in terms of execution time of number 
of tasks. 
 
REFERENCES 
 
[1] Daniel Warneke and Odej Kao, “Exploiting Dynamic Resource 
Allocation for Efficient Parallel Data Processing in the Cloud”, IEEE 
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 
JANUARY 2011. 
[2] Zhen Xiao, Senior Member, IEEE, Weijia Song, and Qi Chen, 
“Dynamic Resource AllocationUsing Virtual Machines for Cloud 

0

50

100

150

200

5 20 40 60 80
Ex

ec
ut

io
n 

Ti
m

e(
M

in
ut

es
) 

Number of Tasks 

MapReduce and
Hadoop
MapReduce and
Nephele
DAG and
Nephele
Proposed
System

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 10, October-2014                                                                         1308 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org 

Computing Environment”,IEEE TRANSACTIONSON PARALLEL 
AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 6, JUNE 2013. 
[3] Amazon Web Services LLC. Amazon Elastic Compute Cloud 
(Amazon EC2).http://aws.amazon.com/ec2/ 2009. 
[4] Amazon Web Services LLC. Amazon Elastic 
MapReduce.http://aws.amazon.com/elasticmapreduce/ 2009. 
[5] R. Chaiken, B. Jenkins, P.-A.Larson, B. Ramsey, D. Shakib, S. 
Weaver, and J. Zhou.SCOPE: Easy and Efficient Parallel Processing 
of Massive Data Sets. Proc. VLDB Endow.,1(2):1265 1276, 2008. 
[6] H. chih Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map- 
Reduce-Merge: SimplifiedRelational Data Processing on Large 
Clusters. In SIGMOD 07: Proceedings of the 2007ACM SIGMOD 
international conference on Management of data, pages 10291040, 
NewYork, NY, USA, 2007. ACM. 
[7] J. Dean and S. Ghemawat. MapReduce: Simplified Data 
Processing on Large Clusters. InOSDI04: Proceedings of the 6th 
conference on Symposium on Opearting Systems Designand 
Implementation, pages 1010, Berkeley, CA, USA, 2004. USENIX 
Association. 
[8] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: 
Distributed Data-ParallelPrograms from Sequential Building Blocks. 
In EuroSys 07: Proceedings of the 2nd ACM SIGOPS/EuroSys 
European Conference on Computer Systems 2007, pages 5972, 
NewYork, NY, USA, 2007. ACM. 
[9] I. Raicu, I. Foster, and Y. Zhao. Many-Task Computing for Grids 
and Supercomputers.In Many-Task Computing on Grids and 
Supercomputers, 2008. MTAGS 2008.Workshopon, pages 111, Nov. 
2008. 
[10] The Apache Software Foundation.Welcome to Hadoop! http: 
//hadoop.apache.org/, 2009. 
[11] T. White. Hadoop: The Definitive Guide. OReilly Media, 2009. 
[12] D. Battre, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. 
Warneke. Nephele/PACTs: AProgramming Model and Execution 
Framework for Web-Scale Analytical Processing. InSoCC 10: 
Proceedings of the ACM Symposium on Cloud Computing 2010, 
pages 119130, New York, NY, USA, 2010. ACM. 
[13] M. Armbrust et al., Above the Clouds: A Berkeley View of 
Cloud Computing, technicalreport, Univ. of California, Berkeley, 
Feb. 2009. 
[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R 
Neugebauer, I. Pratt,and A. Warfield, Xen and the Art of 
Virtualization, Proc. ACM Symp. Operating SystemsPrinciples 
(SOSP 03), Oct. 2003. 
[15] V. Vinothina, Dr. R. Shridaran, and Dr. PadmavathiGanpathi, A 
survey on resource allocation 
strategies in cloud computing, International Journal of Advanced 
Computer Scienceand Applications, 3(6):97–104, 2012. 
[16] Gunho Lee, NirajTolia, ParthasarathyRanganathan, and Randy 
H. Katz, Topology awareresorce allocation for data-intensive 
workloads, ACM SIGCOMM Computer CommunicationReview, 
41(1):120–124, 2011. 
[17] Abirami S.P. and ShaliniRamanathan, Linear scheduling 
strategy for resource allocationin cloud environment, International 
Journal on Cloud Computing: Services and Architecture(IJCCSA), 
2(1):9–17, 2012. 
[18] DanielWarneke and Odej Kao, Exploiting dynamic resource 
allocation for efficient paralleldata processing in the cloud, IEEE 
Transactions On Parallel And Distributed Systems,2011. 

[19] Atsuo Inomata, TaikiMorikawa, Minoru Ikebe and Md. 
MizanurRahman, Proposal andEvaluation of Dynamic Resource 
Allocation Method Based on the Load Of VMs on IaaS,IEEE, 2010. 
[20] N. Roy, A. Dubey, A. Gokhale, and L. Dowdy, A Capacity 
Planning Process forPerformance Assurance of Component-based 
Distributed Systems, in Proceedings ofthe 2nd ACM/SPEC 
International Conference on Performance Engineering (ICPE2011). 
Karlsruhe, Germany: ACM/SPEC, Mar. 2011, pp. 259270. 
[21] L. Ramakrishnan, C. Koelbel, Y.-S.Kee, R. Wolski, D. Nurmi, D. 
Gannon, G. Obertelli, A. YarKhan, A. Mandal, T. M. Huang, K. 
Thyagaraja, and D. Zagorodnov. VGrADS: Enabling e-Science 
Workflows on Grids and Clouds with Fault Tolerance. In SC ’09: 
Proceedings of the Conference on High Performance Computing 
Networking, Storage and Analysis, pages 1–12, New York, NY, USA, 
2009. ACM. 
[22] D. Wentzlaff, C. G. III, N. Beckmann, K. Modzelewski, A. 
Belay,L. Youseff, J. Miller, and A. Agarwal. An Operating System 
forMulticore and Clouds: Mechanisms and Implementation. In 
SoCC’10: Proceedings of the ACM Symposium on Cloud Computing 
2010,pages 3–14, New York, NY, USA, 2010. ACM. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Vinayak V. Awasare graduated in Computer 
Engineering from the University of Pune (India) in 
2012. He is pursuing his Master of engineering in 
Computer Engineering from the University of 
Pune (India).He is currently research scholar 
student in Computer Department, Pimpri 

Chichwad College of Engineering; Pune (India).His research 
interests include wireless networking, Load Balancing and Game 
Theory. 

 
 Sudarshan S. Deshmukh graduated in Computer 
Engineering from the University of Shivaji (India) 
in 2004. He received his Masters in Computer 
Engineering from the Bharati University in 2009. 
He is currently working as an assistant professor, 

Computer Engg, at PCCOE, University of Pune since 2009. He is a 
member of the Technical Committee of Parallel Processing (TCPP), 
IEEE communication society, IAENG etc. Received Nomination for 
IEEE Technical Committee on Parallel Processing Outstanding 
Service Award for 2011.Associate Editor of International Journal of 
Cloud Applications and Computing, also serving as reviewer to 
several journals and conferences His research interests include 
distributed systems, resource sharing, load balancing. 
 

IJSER

http://www.ijser.org/

	‘Vinayak V. Awasare’, ‘PG Student of PCCOE, University of Pune Maharashtra India’ ,
	‘Sudarshan Deshmukh’, ‘Assistant Professor, PCCOE, University of Pune, Maharashtra, India’



